
Atmel AVR Assembler Page 1 of 20

file://C:\Documents and Settings\eivind\Local Settings\Temp\~hhF071.htm 20.02.2003

AVR Assembler Help
Welcome to the ATMEL AVR Assembler.

What's New
Known Issues

Please select between the following Help items:

General information gives general information about the Assembler
Assembler source gives a brief description of what a source file looks like
Instruction mnemonics describes the AVR Instruction set

Arithmetic and Logic Instructions
Branch Instructions
Data Transfer Instructions
Bit and Bit-test Instructions

Assembler directives gives a description of the directives
Expressions describes how to make constant expressions

Expression operands
Expression operators
Functions in expressions

The Assembler is supplied as a MS-DOS command line program that can be used stand-alone or
automatically invoked by AVR Studio. A description of how to use the Command line Assembler
is included in this help file

Device specific instruction set summaries:

The actual instruction set varies between the devices. Use these links to verify the instruction set
for the desired device.

AT90S1200
AT90S2313
AT90S2323 and AT90S2343
AT90S2333 and AT90S4433
AT90S4414 and AT90S8515
AT90S4434 and AT90S8535
AT90C8534
ATtiny10, ATtiny11 and ATtiny12
ATtiny15
ATtiny22
ATtiny26
ATtiny28
ATmega8/8515/8535
ATmega16
ATmega161
ATmega162
ATmega163
ATmega169
ATmega32
ATmega323
ATmega103

Atmel AVR Assembler Page 2 of 20

file://C:\Documents and Settings\eivind\Local Settings\Temp\~hhF071.htm 20.02.2003

ATmega64/128

New for this release (avrasm v1.56):

Added device directives for ATmega162, ATmega169, ATmega8515, ATmega8535, ATtiny26
and AT86RF401.

What's New

AVR Assembler v1.56 date 30-apr-2002

Included device directives for ATmega162, ATmega169, ATmega8515, ATmega8535,
ATtiny26, AT86RF401.

Added *.def.inc files for the above mentioned devices.

General information
The Assembler translates assembly source code into object code. The generated object code can
be used as input to a simulator such as the ATMEL AVR Simulator or an emulator such as the
ATMEL AVR In-Circuit Emulator. The Assembler also generates a PROMable code which can
be programmed directly into the program memory of an AVR microcontroller

The Assembler generates fixed code allocations, consequently no linking is necessary.

The instruction set of the AVR family of microcontrollers is only briefly described, refer to the
AVR Data Book in order to get more detailed knowledge of the instruction set for the different
microcontrollers.

Assembler source
The Assembler works on source files containing instruction mnemonics, labels and directives.
The instruction mnemonics and the directives often take operands.

Code lines should be limited to 120 characters.

Every input line can be preceded by a label, which is an alphanumeric string terminated by a
colon. Labels are used as targets for jump and branch instructions and as variable names in
Program memory and RAM.

An input line may take one of the four following forms:

[label:] directive [operands] [Comment]
[label:] instruction [operands] [Comment]
Comment
Empty line

A comment has the following form:

; [Text]

Atmel AVR Assembler Page 3 of 20

file://C:\Documents and Settings\eivind\Local Settings\Temp\~hhF071.htm 20.02.2003

Items placed in braces are optional. The text between the comment-delimiter (;) and the end of
line (EOL) is ignored by the Assembler. Labels, instructions and directives are described in more
detail later.

Examples:

label: .EQU var1=100 ; Set var1 to 100 (Directive)
 .EQU var2=200 ; Set var2 to 200

test: rjmp test ; Infinite loop (Instruction)
 ; Pure comment line

 ; Another comment line

Note that there are no restrictions with respect to column placement of labels, directives,
comments or instructions.

Instruction mnemonics
The Assembler accepts mnemonic instructions from the instruction set. A summary of the
instruction set mnemonics and their parameters is given here. For a detailed description of the
Instruction set, refer to the AVR Data Book.

Arithmetic and Logic Instructions

Mnemonic Operands Description Operation Flags Cycles
ADD Rd,Rr Add without Carry Rd = Rd + Rr Z,C,N,V,H,S 1
ADC Rd,Rr Add with Carry Rd = Rd + Rr + C Z,C,N,V,H,S 1
ADIW Rd, K Add Immediate To Word Rd+1:Rd,K Z,C,N,V,S 2
SUB Rd,Rr Subtract without Carry Rd = Rd - Rr Z,C,N,V,H,S 1
SUBI Rd,K8 Subtract Immediate Rd = Rd - K8 Z,C,N,V,H,S 1
SBC Rd,Rr Subtract with Carry Rd = Rd - Rr - C Z,C,N,V,H,S 1
SBCI Rd,K8 Subtract with Carry Immedtiate Rd = Rd - K8 - C Z,C,N,V,H,S 1
AND Rd,Rr Logical AND Rd = Rd · Rr Z,N,V,S 1
ANDI Rd,K8 Logical AND with Immediate Rd = Rd · K8 Z,N,V,S 1
OR Rd,Rr Logical OR Rd = Rd V Rr Z,N,V,S 1
ORI Rd,K8 Logical OR with Immediate Rd = Rd V K8 Z,N,V,S 1
EOR Rd,Rr Logical Exclusive OR Rd = Rd EOR Rr Z,N,V,S 1
COM Rd One's Complement Rd = $FF - Rd Z,C,N,V,S 1
NEG Rd Two's Complement Rd = $00 - Rd Z,C,N,V,H,S 1
SBR Rd,K8 Set Bit(s) in Register Rd = Rd V K8 Z,C,N,V,S 1
CBR Rd,K8 Clear Bit(s) in Register Rd = Rd · ($FF - K8) Z,C,N,V,S 1
INC Rd Increment Register Rd = Rd + 1 Z,N,V,S 1
DEC Rd Decrement Register Rd = Rd -1 Z,N,V,S 1
TST Rd Test for Zero or Negative Rd = Rd · Rd Z,C,N,V,S 1
CLR Rd Clear Register Rd = 0 Z,C,N,V,S 1
SER Rd Set Register Rd = $FF None 1

Atmel AVR Assembler Page 4 of 20

file://C:\Documents and Settings\eivind\Local Settings\Temp\~hhF071.htm 20.02.2003

Branch Instructions

ADIW Rdl,K6 Add Immediate to Word Rdh:Rdl = Rdh:Rdl +
K6 Z,C,N,V,S 2

SBIW Rdl,K6 Subtract Immediate from Word Rdh:Rdl = Rdh:Rdl - K
6 Z,C,N,V,S 2

MUL Rd,Rr Multiply Unsigned R1:R0 = Rd * Rr Z,C 2
MULS Rd,Rr Multiply Signed R1:R0 = Rd * Rr Z,C 2
MULSU Rd,Rr Multiply Signed with Unsigned R1:R0 = Rd * Rr Z,C 2

FMUL Rd,Rr Fractional Multiply Unsigned R1:R0 = (Rd * Rr) <<
1 Z,C 2

FMULS Rd,Rr Fractional Multiply Signed R1:R0 = (Rd *Rr) << 1 Z,C 2

FMULSU Rd,Rr Fractional Multiply Signed with
Unsigned

R1:R0 = (Rd * Rr) <<
1 Z,C 2

Mnemonic Operands Description Operation Flags Cycles
RJMP k Relative Jump PC = PC + k +1 None 2
IJMP None Indirect Jump to (Z) PC = Z None 2

EIJMP None Extended Indirect Jump
(Z)

STACK = PC+1, PC(15:0) = Z,
PC(21:16) = EIND None 2

JMP k Jump PC = k None 3

RCALL k Relative Call Subroutine STACK = PC+1, PC = PC + k
+ 1 None 3/4*

ICALL None Indirect Call to (Z) STACK = PC+1, PC = Z None 3/4*

EICALL None Extended Indirect Call to
(Z)

STACK = PC+1, PC(15:0) = Z,
PC(21:16) =EIND None 4*

CALL k Call Subroutine STACK = PC+2, PC = k None 4/5*
RET None Subroutine Return PC = STACK None 4/5*
RETI None Interrupt Return PC = STACK I 4/5*
CPSE Rd,Rr Compare, Skip if equal if (Rd ==Rr) PC = PC 2 or 3 None 1/2/3
CP Rd,Rr Compare Rd -Rr Z,C,N,V,H,S 1
CPC Rd,Rr Compare with Carry Rd - Rr - C Z,C,N,V,H,S 1
CPI Rd,K8 Compare with Immediate Rd - K Z,C,N,V,H,S 1

SBRC Rr,b Skip if bit in register
cleared if(Rr(b)==0) PC = PC + 2 or 3 None 1/2/3

SBRS Rr,b Skip if bit in register set if(Rr(b)==1) PC = PC + 2 or 3 None 1/2/3

SBIC P,b Skip if bit in I/O register
cleared

if(I/O(P,b)==0) PC = PC + 2 or
3 None 1/2/3

SBIS P,b Skip if bit in I/O register
set

if(I/O(P,b)==1) PC = PC + 2 or
3 None 1/2/3

BRBC s,k Branch if Status flag
cleared

if(SREG(s)==0) PC = PC + k +
1 None 1/2

BRBS s,k Branch if Status flag set if(SREG(s)==1) PC = PC + k +
1 None 1/2

BREQ k Branch if equal if(Z==1) PC = PC + k + 1 None 1/2
BRNE k Branch if not equal if(Z==0) PC = PC + k + 1 None 1/2
BRCS k Branch if carry set if(C==1) PC = PC + k + 1 None 1/2
BRCC k Branch if carry cleared if(C==0) PC = PC + k + 1 None 1/2

Atmel AVR Assembler Page 5 of 20

file://C:\Documents and Settings\eivind\Local Settings\Temp\~hhF071.htm 20.02.2003

* Cycle times for data memory accesses assume internal memory accesses, and are not valid for
accesses through the external RAM interface. For the instructions CALL, ICALL, EICALL,
RCALL, RET and RETI, add three cycles plus two cycles for each wait state in devices with up
to 16 bit PC (128KB program memory). For devices with more than 128KB program memory,
add five cycles plus three cycles for each wait state.

Data Transfer Instructions

BRSH k Branch if same or higher if(C==0) PC = PC + k + 1 None 1/2
BRLO k Branch if lower if(C==1) PC = PC + k + 1 None 1/2
BRMI k Branch if minus if(N==1) PC = PC + k + 1 None 1/2
BRPL k Branch if plus if(N==0) PC = PC + k + 1 None 1/2

BRGE k Branch if greater than or
equal (signed) if(S==0) PC = PC + k + 1 None 1/2

BRLT k Branch if less than
(signed) if(S==1) PC = PC + k + 1 None 1/2

BRHS k Branch if half carry flag
set if(H==1) PC = PC + k + 1 None 1/2

BRHC k Branch if half carry flag
cleared if(H==0) PC = PC + k + 1 None 1/2

BRTS k Branch if T flag set if(T==1) PC = PC + k + 1 None 1/2
BRTC k Branch if T flag cleared if(T==0) PC = PC + k + 1 None 1/2
BRVS k Branch if overflow flag set if(V==1) PC = PC + k + 1 None 1/2

BRVC k Branch if overflow flag
cleared if(V==0) PC = PC + k + 1 None 1/2

BRIE k Branch if interrupt
enabled if(I==1) PC = PC + k + 1 None 1/2

BRID k Branch if interrupt
disabled if(I==0) PC = PC + k + 1 None 1/2

Mnemonic Operands Description Operation Flags Cycles
MOV Rd,Rr Copy register Rd = Rr None 1

MOVW Rd,Rr Copy register pair Rd+1:Rd = Rr+1:Rr, r,d
even None 1

LDI Rd,K8 Load Immediate Rd = K None 1
LDS Rd,k Load Direct Rd = (k) None 2*
LD Rd,X Load Indirect Rd = (X) None 2*
LD Rd,X+ Load Indirect and Post-Increment Rd = (X), X=X+1 None 2*
LD Rd,-X Load Indirect and Pre-Decrement X=X-1, Rd = (X) None 2*
LD Rd,Y Load Indirect Rd = (Y) None 2*
LD Rd,Y+ Load Indirect and Post-Increment Rd = (Y), Y=Y+1 None 2*
LD Rd,-Y Load Indirect and Pre-Decrement Y=Y-1, Rd = (Y) None 2*
LDD Rd,Y+q Load Indirect with displacement Rd = (Y+q) None 2*
LD Rd,Z Load Indirect Rd = (Z) None 2*
LD Rd,Z+ Load Indirect and Post-Increment Rd = (Z), Z=Z+1 None 2*
LD Rd,-Z Load Indirect and Pre-Decrement Z=Z-1, Rd = (Z) None 2*
LDD Rd,Z+q Load Indirect with displacement Rd = (Z+q) None 2*
STS k,Rr Store Direct (k) = Rr None 2*
ST X,Rr Store Indirect (X) = Rr None 2*
ST X+,Rr Store Indirect and Post-Increment (X) = Rr, X=X+1 None 2*

Atmel AVR Assembler Page 6 of 20

file://C:\Documents and Settings\eivind\Local Settings\Temp\~hhF071.htm 20.02.2003

* Cycle times for data memory accesses assume internal memory accesses and are not valid for
accesses through the external RAM interface. For the LD, ST, LDD, STD, LDS, STS, PUSH and
POP instructions, add one cycle plus one cycle for each wait state.

Bit and Bit-test Instructions

ST -X,Rr Store Indirect and Pre-Decrement X=X-1, (X)=Rr None 2*
ST Y,Rr Store Indirect (Y) = Rr None 2*
ST Y+,Rr Store Indirect and Post-Increment (Y) = Rr, Y=Y+1 None 2
ST -Y,Rr Store Indirect and Pre-Decrement Y=Y-1, (Y) = Rr None 2
ST Y+q,Rr Store Indirect with displacement (Y+q) = Rr None 2
ST Z,Rr Store Indirect (Z) = Rr None 2
ST Z+,Rr Store Indirect and Post-Increment (Z) = Rr, Z=Z+1 None 2
ST -Z,Rr Store Indirect and Pre-Decrement Z=Z-1, (Z) = Rr None 2
ST Z+q,Rr Store Indirect with displacement (Z+q) = Rr None 2
LPM None Load Program Memory R0 = (Z) None 3
LPM Rd,Z Load Program Memory Rd = (Z) None 3

LPM Rd,Z+ Load Program Memory and Post-
Increment Rd = (Z), Z=Z+1 None 3

ELPM None Extended Load Program Memory R0 = (RAMPZ:Z) None 3
ELPM Rd,Z Extended Load Program Memory Rd = (RAMPZ:Z) None 3

ELPM Rd,Z+ Extended Load Program Memory and
Post Increment

Rd = (RAMPZ:Z), Z =
Z+1 None 3

SPM None Store Program Memory (Z) = R1:R0 None -
ESPM None Extended Store Program Memory (RAMPZ:Z) = R1:R0 None -
IN Rd,P In Port Rd = P None 1
OUT P,Rr Out Port P = Rr None 1
PUSH Rr Push register on Stack STACK = Rr None 2
POP Rd Pop register from Stack Rd = STACK None 2

Mnemonic Operands Description Operation Flags Cycles

LSL Rd Logical shift left Rd(n+1)=Rd(n), Rd(0)=0, C=Rd
(7) Z,C,N,V,H,S 1

LSR Rd Logical shift right Rd(n)=Rd(n+1), Rd(7)=0, C=Rd
(0) Z,C,N,V,S 1

ROL Rd Rotate left through
carry

Rd(0)=C, Rd(n+1)=Rd(n), C=Rd
(7) Z,C,N,V,H,S 1

ROR Rd Rotate right through
carry

Rd(7)=C, Rd(n)=Rd(n+1), C=Rd
(0) Z,C,N,V,S 1

ASR Rd Arithmetic shift right Rd(n)=Rd(n+1), n=0,...,6 Z,C,N,V,S 1

SWAP Rd Swap nibbles Rd(3..0) = Rd(7..4), Rd(7..4) = Rd
(3..0) None 1

BSET s Set flag SREG(s) = 1 SREG(s) 1
BCLR s Clear flag SREG(s) = 0 SREG(s) 1
SBI P,b Set bit in I/O register I/O(P,b) = 1 None 2
CBI P,b Clear bit in I/O register I/O(P,b) = 0 None 2

BST Rr,b Bit store from register
to T T = Rr(b) T 1

BLD Rd,b Bit load from register to
T Rd(b) = T None 1

Atmel AVR Assembler Page 7 of 20

file://C:\Documents and Settings\eivind\Local Settings\Temp\~hhF071.htm 20.02.2003

The Assembler is not case sensitive.

The operands have the following forms:

Rd: Destination (and source) register in the register file
Rr: Source register in the register file
b: Constant (0-7), can be a constant expression
s: Constant (0-7), can be a constant expression
P: Constant (0-31/63), can be a constant expression
K6; Constant (0-63), can be a constant expression
K8: Constant (0-255), can be a constant expression
k: Constant, value range depending on instruction. Can be a constant expression
q: Constant (0-63), can be a constant expression
Rdl: R24, R26, R28, R30. For ADIW and SBIW instructions
X,Y,Z: Indirect address registers (X=R27:R26, Y=R29:R28, Z=R31:R30)

Assembler directives
The Assembler supports a number of directives. The directives are not translated directly into
opcodes. Instead, they are used to adjust the location of the program in memory, define macros,
initialize memory and so on. An overview of the directives is given in the following table.

SEC None Set carry flag C =1 C 1
CLC None Clear carry flag C = 0 C 1
SEN None Set negative flag N = 1 N 1
CLN None Clear negative flag N = 0 N 1
SEZ None Set zero flag Z = 1 Z 1
CLZ None Clear zero flag Z = 0 Z 1
SEI None Set interrupt flag I = 1 I 1
CLI None Clear interrupt flag I = 0 I 1
SES None Set signed flag S = 1 S 1
CLN None Clear signed flag S = 0 S 1
SEV None Set overflow flag V = 1 V 1
CLV None Clear overflow flag V = 0 V 1
SET None Set T-flag T = 1 T 1
CLT None Clear T-flag T = 0 T 1
SEH None Set half carry flag H = 1 H 1
CLH None Clear half carry flag H = 0 H 1
NOP None No operation None None 1
SLEEP None Sleep See instruction manual None 1
WDR None Watchdog Reset See instruction manual None 1
BREAK None Execution Break See instruction manual None 1

Atmel AVR Assembler Page 8 of 20

file://C:\Documents and Settings\eivind\Local Settings\Temp\~hhF071.htm 20.02.2003

Note that all directives must be preceded by a period.

BYTE - Reserve bytes to a variable

The BYTE directive reserves memory resources in the SRAM. In order to be able to refer to the
reserved location, the BYTE directive should be preceded by a label. The directive takes one
parameter, which is the number of bytes to reserve. The directive can only be used within a Data
Segment (see directives CSEG and DSEG). Note that a parameter must be given. The allocated
bytes are not initialized.

Syntax:
LABEL: .BYTE expression

Example:
.DSEG
var1: .BYTE 1 ; reserve 1 byte to var1
table: .BYTE tab_size ; reserve tab_size bytes

.CSEG
 ldi r30,low(var1) ; Load Z register low
 ldi r31,high(var1) ; Load Z register high
 ld r1,Z ; Load VAR1 into register 1

CSEG - Code segment

The CSEG directive defines the start of a Code Segment. An Assembler file can consist of several
Code Segments, which are concatenated into one Code Segment when assembled. The BYTE
directive can not be used within a Code Segment. The default segment type is Code. The Code
Segments have their own location counter which is a word counter. The ORG directive can be
used to place code and constants at specific locations in the Program memory. The directive does
not take any parameters.

Syntax:

Directive Description
BYTE Reserve byte to a variable
CSEG Code Segment
CSEGSIZE Program memory size
DB Define constant byte(s)
DEF Define a symbolic name on a register
DEVICE Define which device to assemble for
DSEG Data Segment
DW Define Constant word(s)
ENDM, ENDMACRO End macro
EQU Set a symbol equal to an expression
ESEG EEPROM Segment
EXIT Exit from file
INCLUDE Read source from another file
LIST Turn listfile generation on
LISTMAC Turn Macro expansion in list file on
NOLIST Turn listfile generation off
ORG Set program origin
SET Set a symbol to an expression

Atmel AVR Assembler Page 9 of 20

file://C:\Documents and Settings\eivind\Local Settings\Temp\~hhF071.htm 20.02.2003

.CSEG

Example:
.DSEG ; Start data segment
vartab: .BYTE 4 ; Reserve 4 bytes in SRAM

.CSEG ; Start code segment
const: .DW 2 ; Write 0x0002 in prog.mem.
 mov r1,r0 ; Do something

CSEGSIZE - Program Memory Size

AT94K devices have a user configurable memory partition between the AVR Program memory
and the data memory. The program and data SRAM is divided into three blocks: 10K x 16
dedicated program SRAM, 4K x 8 dedicated data SRAM, and 6K x 16 or 12K x 8 configurable
SRAM which may be swapped between program and data memory spaces in 2K x 16 or 4K x 8
partitions.
This directive is used to specify the size of the program memory block.

Syntax:
.CSEGSIZE = 10 | 12 | 14 | 16

Example:
.CSEGSIZE = 12 ; Specifies the program meory size as 12K x 16

DB - Define constant byte(s) in program memory and EEPROM

The DB directive reserves memory resources in the program memory or the EEPROM memory.
In order to be able to refer to the reserved locations, the DB directive should be preceded by a
label. The DB directive takes a list of expressions, and must contain at least one expression. The
DB directive must be placed in a Code Segment or an EEPROM Segment.

The expression list is a sequence of expressions, delimited by commas. Each expression must
evaluate to a number between -128 and 255. If the expression evaluates to a negative number, the
8 bits twos complement of the number will be placed in the program memory or EEPROM
memory location.

If the DB directive is given in a Code Segment and the expressionlist contains more than one
expression, the expressions are packed so that two bytes are placed in each program memory
word. If the expressionlist contains an odd number of expressions, the last expression will be
placed in a program memory word of its own, even if the next line in the assemby code contains a
DB directive. The unused half of the program word is set to zero. A warning is given, in order to
notify the user that an extra zero byte is added to the .DB statement

Syntax:
LABEL: .DB expressionlist

Example:
.CSEG
consts: .DB 0, 255, 0b01010101, -128, 0xaa

.ESEG

Atmel AVR Assembler Page 10 of 20

file://C:\Documents and Settings\eivind\Local Settings\Temp\~hhF071.htm 20.02.2003

const2: .DB 1,2,3

DEF - Set a symbolic name on a register

The DEF directive allows the registers to be referred to through symbols. A defined symbol can
be used in the rest of the program to refer to the register it is assigned to. A register can have
several symbolic names attached to it. A symbol can be redefined later in the program.

Syntax:
.DEF Symbol=Register

Example:
.DEF temp=R16
.DEF ior=R0

.CSEG
 ldi temp,0xf0 ; Load 0xf0 into temp register
 in ior,0x3f ; Read SREG into ior register
 eor temp,ior ; Exclusive or temp and ior

DEVICE - Define which device to assemble for

The DEVICE directive allows the user to tell the Assembler which device the code is to be
executed on. Using this directive, a warning is issued if an instruction not supported by the
specified device occurs. If the Code Segment or EEPROM Segment are larger than supplied by
the device, a warning message is given. If the directive is not used, it is assumed that all
instructions are supported and that there are no restrictions on Program and EEPROM memory.

Syntax:
.DEVICE <device code>

Table: Device codes:

Example:
.DEVICE AT90S1200 ; Use the AT90S1200

.CSEG

Classic Tiny Mega Other
AT90S120 ATtiny11 ATmega8 AT94K
AT90S2313 ATtiny12 ATmega16 AT86RF401
AT90S2323 ATtiny22 ATmega161
AT90S2333 ATtiny26 ATmega162
AT90S4414 ATmega163
AT90S4434 ATmega32
AT90S8515 ATmega323
AT90S8534 ATmega103
AT90S8535 ATmega104
AT90S2343 ATmega8515
AT90S4433 ATmega8535

 ATmega64
 ATmega128

Atmel AVR Assembler Page 11 of 20

file://C:\Documents and Settings\eivind\Local Settings\Temp\~hhF071.htm 20.02.2003

 push r30 ; This statement will generate a warning
 ; since the specified device does not
 ; have this instruction

Note: There has been a change of names that took effect 14.06.2001. The
following devices are affected:

Old name New name
ATmega104 ATmega128
ATmega32 ATmega323
ATmega164 ATmega16

In order NOT to break old projects, both old and new device directives are
allowed for the parts that are affected.

DSEG - Data Segment

The DSEG directive defines the start of a Data Segment. An Assembler file can consist of several
Data Segments, which are concatenated into one Data Segment when assembled. A Data Segment
will normally only consist of BYTE directives (and labels). The Data Segments have their own
location counter which is a byte counter. The ORG directive can be used to place the variables at
specific locations in the SRAM. The directive does not take any parameters.

Syntax:
.DSEG

Example:
.DSEG ; Start data segment
var1: .BYTE 1 ; reserve 1 byte to var1
table: .BYTE tab_size ; reserve tab_size bytes.

.CSEG
 ldi r30,low(var1) ; Load Z register low
 ldi r31,high(var1) ; Load Z register high
 ld r1,Z ; Load var1 into register 1

DW - Define constant word(s) in program memory and EEPROM

The DW directive reserves memory resources in the program memory or the EEPROM memory.
In order to be able to refer to the reserved locations, the DW directive should be preceded by a
label.
The DW directive takes a list of expressions, and must contain at least one expression.
The DB directive must be placed in a Code Segment or an EEPROM Segment.

The expression list is a sequence of expressions, delimited by commas. Each expression must
evaluate to a number between -32768 and 65535. If the expression evaluates to a negative
number, the 16 bits twos complement of the number will be placed in the program memory or
EEPROM memory location.

Syntax:
LABEL: .DW expressionlist

Example:

Atmel AVR Assembler Page 12 of 20

file://C:\Documents and Settings\eivind\Local Settings\Temp\~hhF071.htm 20.02.2003

.CSEG
varlist: .DW 0, 0xffff, 0b1001110001010101, -32768, 65535

.ESEG
eevarlst: .DW 0,0xffff,10

ENDMACRO - End macro

The ENDMACRO directive defines the end of a Macro definition. The directive does not take
any parameters. See the MACRO directive for more information on defining Macros.

Syntax:
.ENDMACRO

Example:
.MACRO SUBI16 ; Start macro definition
 subi r16,low(@0) ; Subtract low byte
 sbci r17,high(@0) ; Subtract high byte
.ENDMACRO

EQU - Set a symbol equal to an expression

The EQU directive assigns a value to a label. This label can then be used in later expressions. A
label assigned to a value by the EQU directive is a constant and can not be changed or redefined.

Syntax:
.EQU label = expression

Example:
.EQU io_offset = 0x23
.EQU porta = io_offset + 2

.CSEG ; Start code segment
 clr r2 ; Clear register 2
 out porta,r2 ; Write to Port A

ESEG - EEPROM Segment

The ESEG directive defines the start of an EEPROM Segment. An Assembler file can consist of
several EEPROM Segments, which are concatenated into one EEPROM Segment when
assembled. An EEPROM Segment will normally only consist of DB and DW directives (and
labels). The EEPROM Segments have their own location counter which is a byte counter. The
ORG directive can be used to place the variables at specific locations in the EEPROM. The
directive does not take any parameters.

Syntax:
.ESEG

Example:
.DSEG ; Start data segment
var1: .BYTE 1 ; reserve 1 byte to var1
table: .BYTE tab_size ; reserve tab_size bytes.

Atmel AVR Assembler Page 13 of 20

file://C:\Documents and Settings\eivind\Local Settings\Temp\~hhF071.htm 20.02.2003

.ESEG
eevar1: .DW 0xffff ; initialize 1 word in EEPROM

EXIT - Exit this file

The EXIT directive tells the Assembler to stop assembling the file. Normally, the Assembler runs
until end of file (EOF). If an EXIT directive appears in an included file, the Assembler continues
from the line following the INCLUDE directive in the file containing the INCLUDE directive.

Syntax:
.EXIT

Example:
.EXIT ; Exit this file

INCLUDE - Include another file

The INCLUDE directive tells the Assembler to start reading from a specified file. The Assembler
then assembles the specified file until end of file (EOF) or an EXIT directive is encountered. An
included file may itself contain INCLUDE directives.

Syntax:
.INCLUDE "filename"

Example:
; iodefs.asm:
.EQU sreg = 0x3f ; Status register
.EQU sphigh = 0x3e ; Stack pointer high
.EQU splow = 0x3d ; Stack pointer low

; incdemo.asm
.INCLUDE iodefs.asm ; Include I/O definitions
 in r0,sreg ; Read status register

LIST - Turn the listfile generation on

The LIST directive tells the Assembler to turn listfile generation on. The Assembler generates a
listfile which is a combination of assembly source code, addresses and opcodes. Listfile
generation is turned on by default. The directive can also be used together with the NOLIST
directive in order to only generate listfile of selected parts of an assembly source file.

Syntax:
.LIST

Example:
.NOLIST ; Disable listfile generation
.INCLUDE "macro.inc" ; The included files will not
.INCLUDE "const.def" ; be shown in the listfile
.LIST ; Reenable listfile generation

LISTMAC - Turn macro expansion on

Atmel AVR Assembler Page 14 of 20

file://C:\Documents and Settings\eivind\Local Settings\Temp\~hhF071.htm 20.02.2003

The LISTMAC directive tells the Assembler that when a macro is called, the expansion of the
macro is to be shown on the listfile generated by the Assembler. The default is that only the
macro-call with parameters is shown in the listfile.

Syntax:
.LISTMAC

Example:
.MACRO MACX ; Define an example macro
 add r0,@0 ; Do something
 eor r1,@1 ; Do something
.ENDMACRO ; End macro definition

.LISTMAC ; Enable macro expansion
 MACX r2,r1 ; Call macro, show expansion

MACRO - Begin macro

The MACRO directive tells the Assembler that this is the start of a Macro. The MACRO
directive takes the Macro name as parameter. When the name of the Macro is written later in the
program, the Macro definition is expanded at the place it was used. A Macro can take up to 10
parameters. These parameters are referred to as @0-@9 within the Macro definition. When
issuing a Macro call, the parameters are given as a comma separated list. The Macro definition is
terminated by an ENDMACRO directive.

By default, only the call to the Macro is shown on the listfile generated by the Assembler. In
order to include the macro expansion in the listfile, a LISTMAC directive must be used. A macro
is marked with a + in the opcode field of the listfile.

Syntax:
.MACRO macroname

Example:
.MACRO SUBI16 ; Start macro definition
 subi @1,low(@0) ; Subtract low byte
 sbci @2,high(@0) ; Subtract high byte
.ENDMACRO ; End macro definition

.CSEG ; Start code segment
 SUBI16 0x1234,r16,r17 ; Sub.0x1234 from r17:r16

NOLIST - Turn listfile generation off

The NOLIST directive tells the Assembler to turn listfile generation off. The Assembler normally
generates a listfile which is a combination of assembly source code, addresses and opcodes.
Listfile generation is turned on by default, but can be disabled by using this directive. The
directive can also be used together with the LIST directive in order to only generate listfile of
selected parts of an assembly source file.

Syntax:
.NOLIST

Atmel AVR Assembler Page 15 of 20

file://C:\Documents and Settings\eivind\Local Settings\Temp\~hhF071.htm 20.02.2003

Example:
.NOLIST ; Disable listfile generation
.INCLUDE "macro.inc" ; The included files will not
.INCLUDE "const.def" ; be shown in the listfile
.LIST ; Reenable listfile generation

ORG - Set program origin

The ORG directive sets the location counter to an absolute value. The value to set is given as a
parameter. If an ORG directive is given within a Data Segment, then it is the SRAM location
counter which is set, if the directive is given within a Code Segment, then it is the Program
memory counter which is set and if the directive is given within an EEPROM Segment, it is the
EEPROM location counter which is set. If the directive is preceded by a label (on the same source
code line), the label will be given the value of the parameter. The default values of the Code and
the EEPROM location counters are zero, and the default value of the SRAM location counter is
32 (due to the registers occupying addresses 0-31) when the assembling is started. Note that the
SRAM and EEPROM location counters count bytes whereas the Program memory location
counter counts words.

Syntax:
.ORG expression

Example:
.DSEG ; Start data segment

.ORG 0x37 ; Set SRAM address to hex 37
variable: .BYTE 1 ; Reserve a byte at SRAM adr.37H

.CSEG

.ORG 0x10 ; Set Program Counter to hex 10
 mov r0,r1 ; Do something

SET - Set a symbol equal to an expression

The SET directive assigns a value to a label. This label can then be used in later expressions. A
label assigned to a value by the SET directive can be changed later in the program.

Syntax:
.SET label = expression

Example:
.SET io_offset = 0x23
.SET porta = io_offset + 2

.CSEG ; Start code segment
 clr r2 ; Clear register 2
 out porta,r2 ; Write to Port A

Expressions
The Assembler incorporates expressions. Expressions can consist of operands, operators and

Atmel AVR Assembler Page 16 of 20

file://C:\Documents and Settings\eivind\Local Settings\Temp\~hhF071.htm 20.02.2003

functions. All expressions are internally 32 bits.

Operands

The following operands can be used:

User defined labels which are given the value of the location counter at the place they
appear.
User defined variables defined by the SET directive
User defined constants defined by the EQU directive
Integer constants: constants can be given in several formats, including

Decimal (default): 10, 255
Hexadecimal (two notations): 0x0a, $0a, 0xff, $ff
Binary: 0b00001010, 0b11111111
Octal (leading zero): 010, 077

PC - the current value of the Program memory location counter

Operators

The Assembler supports a number of operators which are described here. The higher the
precedence, the higher the priority. Expressions may be enclosed in parentheses, and such
expressions are always evaluated before combined with anything outside the parentheses.

The following operators are defined:

Symbol Description
! Logical Not
~ Bitwise Not
- Unary Minus
* Multiplication
/ Division
+ Addition
- Subtraction
<< Shift left
>> Shift right
< Less than
<= Less than or equal
> Greater than
>= Greater than or equal
== Equal
!= Not equal
& Bitwise And
^ Bitwise Xor
| Bitwise Or
&& Logical And

Atmel AVR Assembler Page 17 of 20

file://C:\Documents and Settings\eivind\Local Settings\Temp\~hhF071.htm 20.02.2003

Logical Not

Symbol: !
Description: Unary operator which returns 1 if the expression was zero, and
returns 0 if the expression was nonzero
Precedence: 14
Example: ldi r16,!0xf0 ; Load r16 with 0x00

Bitwise Not

Symbol: ~
Description: Unary operator which returns the input expression with all bits
inverted
Precedence: 14
Example: ldi r16,~0xf0 ; Load r16 with 0x0f

Unary Minus

Symbol: -
Description: Unary operator which returns the arithmetic negation of an
expression
Precedence: 14
Example: ldi r16,-2 ; Load -2(0xfe) in r16

Multiplication

Symbol: *
Description: Binary operator which returns the product of two expressions
Precedence: 13
Example: ldi r30,label*2 ; Load r30 with label*2

Division

Symbol: /
Description: Binary operator which returns the integer quotient of the left
expression divided by the right expression
Precedence: 13
Example: ldi r30,label/2 ; Load r30 with label/2

Addition

Symbol: +
Description: Binary operator which returns the sum of two expressions
Precedence: 12
Example: ldi r30,c1+c2 ; Load r30 with c1+c2

Subtraction

Symbol: -
Description: Binary operator which returns the left expression minus the right
expression

|| Logical Or

Atmel AVR Assembler Page 18 of 20

file://C:\Documents and Settings\eivind\Local Settings\Temp\~hhF071.htm 20.02.2003

Precedence: 12
Example: ldi r17,c1-c2 ;Load r17 with c1-c2

Shift left

Symbol: <<
Description: Binary operator which returns the left expression shifted left
the number given by the right expression
Precedence: 11
Example: ldi r17,1<<bitmask ;Load r17 with 1 shifted left bitmask times

Shift right

Symbol: >>
Description: Binary operator which returns the left expression shifted right
the number given by the right expression
Precedence: 11
Example: ldi r17,c1>>c2 ;Load r17 with c1 shifted right c2 times

Less than

Symbol: <
Description: Binary operator which returns 1 if the signed expression to the
left is Less than the signed expression to the right, 0 otherwise
Precedence: 10
Example: ori r18,bitmask*(c1<c2)+1 ;Or r18 with an expression

Less or equal

Symbol: <=
Description: Binary operator which returns 1 if the signed expression to the
left is Less than or Equal to the signed expression to the right, 0 otherwise
Precedence: 10
Example: ori r18,bitmask*(c1<=c2)+1 ;Or r18 with an expression

Greater than

Symbol: >
Description: Binary operator which returns 1 if the signed expression to the
left is Greater than the signed expression to the right, 0 otherwise
 Precedence: 10
 Example: ori r18,bitmask*(c1>c2)+1 ;Or r18 with an expression

Greater or equal

Symbol: >=
Description: Binary operator which returns 1 if the signed expression to the
left is Greater than or Equal to the signed expression to the right, 0
otherwise
Precedence: 10
Example: ori r18,bitmask*(c1>=c2)+1 ;Or r18 with an expression

Equal

Atmel AVR Assembler Page 19 of 20

file://C:\Documents and Settings\eivind\Local Settings\Temp\~hhF071.htm 20.02.2003

Symbol: ==
Description: Binary operator which returns 1 if the signed expression to the
left is Equal to the signed expression to the right, 0 otherwise
Precedence: 9
Example: andi r19,bitmask*(c1==c2)+1 ;And r19 with an expression

Not equal

Symbol: !=
Description: Binary operator which returns 1 if the signed expression to the
left is Not Equal to the signed expression to the right, 0 otherwise
Precedence: 9
Example: .SET flag=(c1!=c2) ;Set flag to 1 or 0

Bitwise And

Symbol: &
Description: Binary operator which returns the bitwise And between two
expressions
Precedence: 8
Example: ldi r18,High(c1&c2) ;Load r18 with an expression

Bitwise Xor

Symbol: ^
Description: Binary operator which returns the bitwise Exclusive Or between
two expressions
Precedence: 7
Example: ldi r18,Low(c1^c2) ;Load r18 with an expression

Bitwise Or

Symbol: |
Description: Binary operator which returns the bitwise Or between two
expressions
Precedence: 6
Example: ldi r18,Low(c1|c2) ;Load r18 with an expression

Logical And

Symbol: &&
Description: Binary operator which returns 1 if the expressions are both
nonzero, 0 otherwise
Precedence: 5
Example: ldi r18,Low(c1&&c2) ;Load r18 with an expression

Logical Or

Symbol: ||
Description: Binary operator which returns 1 if one or both of the expressions
are nonzero, 0 otherwise
Precedence: 4
Example: ldi r18,Low(c1||c2) ;Load r18 with an expression

Atmel AVR Assembler Page 20 of 20

file://C:\Documents and Settings\eivind\Local Settings\Temp\~hhF071.htm 20.02.2003

Functions

The following functions are defined:

LOW(expression) returns the low byte of an expression
HIGH(expression) returns the second byte of an expression
BYTE2(expression) is the same function as HIGH
BYTE3(expression) returns the third byte of an expression
BYTE4(expression) returns the fourth byte of an expression
LWRD(expression) returns bits 0-15 of an expression
HWRD(expression) returns bits 16-31 of an expression
PAGE(expression) returns bits 16-21 of an expression
EXP2(expression) returns 2 to the power of expression
LOG2(expression) returns the integer part of log2(expression)

